x^2=19/7

Simple and best practice solution for x^2=19/7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=19/7 equation:



x^2=19/7
We move all terms to the left:
x^2-(19/7)=0
We add all the numbers together, and all the variables
x^2-(+19/7)=0
We get rid of parentheses
x^2-19/7=0
We multiply all the terms by the denominator
x^2*7-19=0
Wy multiply elements
7x^2-19=0
a = 7; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·7·(-19)
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{133}}{2*7}=\frac{0-2\sqrt{133}}{14} =-\frac{2\sqrt{133}}{14} =-\frac{\sqrt{133}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{133}}{2*7}=\frac{0+2\sqrt{133}}{14} =\frac{2\sqrt{133}}{14} =\frac{\sqrt{133}}{7} $

See similar equations:

| -10+1+7x=35 | | 5k-7÷4=5 | | 13x+6=22 | | 5k-7/4=5 | | x+61=213 | | 4(t-5)/2(t+6)=1/2 | | m+16=213 | | 6y+18=15y | | x*2x=10 | | 4/7m=2/7(2m+1 | | 4x-6/7x+5=3/2 | | 10=2u-8 | | 4x+3x+35=90 | | 3x/5=21/25 | | 2p÷3-P÷5=35 | | 5x(2)=20 | | -3x/4=-21 | | -5/7u=20 | | 2x-9=99 | | (2x+1)(x+2)=77 | | (6+z)(3z+7)=0 | | (y+50)=(10y+20) | | S+3s+4s=0 | | 2x^2+2x-91=0 | | A(n)=8+(3)+(n-1) | | C=30.00-0.10x | | A(n)=3+(n-1)+(5) | | 8x+3=27+3x | | (y-5/y-3)+1=y+6/y+3 | | f(5)=4X+5Y=13.6 | | f(5)=4X+5Y=13.6 | | 3x(5)-1=44 |

Equations solver categories